
1

A Framework for Composing SOAP, Non-SOAP
and Non-Web Services
Jonathan Lee, Shin-Jie Lee, and Ping-Feng Wang

Abstract—Recently, there is a trend on developing mobile applications based on service-oriented architecture in numerous application
domains, such as telematics and smart home. Although efforts have been made on developing composite SOAP services, little
emphasis has been put on invoking and composing a combination of SOAP, non-SOAP, and non-web services into a composite
process to execute complex tasks on various mobile devices. Main challenges are two-fold: one is how to invoke and compose
heterogeneous web services with various protocols and content types, including SOAP, RESTful, and OSGi services; and the other
is how to integrate non-web services, like Web contents and mobile applications, into a composite service process. In this work, we
propose an approach to invoking and composing SOAP, non-SOAP, and non-web services with two key features: an extended BPEL
engine bundled with adapters to enable direct invocation and composition of SOAP, RESTful and OSGi services based on Adapter
pattern; and two transformation mechanisms devised to enable conversion of Web contents and Android activities into OSGi services.
In the experimental evaluations, we demonstrate network traffic and turnaround time of our approach are better than those of the
traditional ones.

Index Terms—Heterogeneous service composition, web service, service composition engine.

✦

1 INTRODUCTION

Recently, there is a trend on developing mobile appli-
cations based on service-oriented architecture (SOA) in
numerous application domains, such as telematics [1],
business [2], smart home [3][4] and internet of things
(IOT) [5]. In IOT, for example, heterogeneous web ser-
vices are supposed to be integrated to provide composite
services. These heterogeneous services may include Sim-
ple Object Access Protocol (SOAP) [22] services, RESTful
services [29], and OSGi services [30]. SOAP is a proto-
col specification for exchanging structured information
during the implementation of web services, and SOAP
services can be employed to build composite web ser-
vices using Business Process Execution Language (BPEL)
[6]. RESTful services are also considered an architectural
style that can be used to construct software for clients
to request services. An increasing number of Internet
services have been developed as RESTful services to
provide easier interfaces for displaying object features
and communicating with external services. OSGi tech-
nology provides an open service platform for service in-
stallation, activation, and management in devices. OSGi
services support point-to-point remote service delivery
programs that enable dynamical binding, assembly, and
execution of device services.

Although efforts have been made on developing com-
posite SOAP services [6][7], little emphasis has been put
on invoking and composing a combination of SOAP,

Jonathan Lee is with Department of Computer Science and Information En-
gineering, National Taiwan University, Taiwan, email:jlee@csie.ntu.edu.tw.
Shin-Jie Lee is with Computer and Network Center, National Cheng Kung
University, Taiwan, email: jielee@mail.ncku.edu.tw. Ping-Feng Wang is with
Department of Computer Science and Information Engineering, National
Central University, Taiwan, email: 93542011@cc.ncu.edu.tw

non-SOAP, and non-web services into a composite pro-
cess in order to complete complex tasks on a variety
of mobile devices. The challenges can be best explained
from the following two perspectives:

• How to invoke and compose heterogeneous web
services with various protocols and content types,
such as SOAP, RESTful, and OSGi services? A com-
posite process may involve invocations of SOAP,
RESTful and OSGi services over SOAP protocol,
HTTP and Java method call, respectively. In addi-
tion, it also involves a variety of message content
types, such as SOAP, JSON, YAML, Protocol Buffer
and Java objects, in composing the heterogeneous
web services.

• How to integrate non-web services, including Web
contents and mobile applications, into a composite
web service process? Non-web services in a mobile
environment typically consist of Web contents and
mobile applications. Web contents are usually in
the form of HTML documents. The program exe-
cution entry points of mobile applications are usu-
ally developed as GUI components, e.g., Activities
in Android platform. Both of these two non-web
services are difficult to be composed by a service
composition engine, like a BPEL engine.

In this work, we propose a framework for invok-
ing and composing SOAP, non-SOAP and non-web
services on mobile devices with two key features: a
BPEL engine extended and bundled with adapters to
enable the direct invocation and composition of SOAP,
RESTful and OSGi services based on Adapter pattern,
which provides a flexible mechanism for adding newly
developed adapters for invoking some other kinds of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

p g

SOAP Service

Non SOAP Service

Non Web Service

SOAP
Service

OSGi
Service

RESTful
Service

Android
Application

Web
Content

BPEL Engine

Adapters

Transformation
Mechanisms

Fig. 1. Conceptual model of the framework for invoking
and composing SOAP, non-SOAP and non-web services

services without modifying the core BPEL engine; and
two transformation mechanisms devised to enable the
transformation of Web contents and Android activities
into OSGi services that can be composed by the extended
BPEL engine.

Figure 1 shows the conceptual model of the frame-
work for invoking and composing SOAP, non-SOAP and
non-web services. Three adapters for invoking SOAP,
RESTful, and OSGi services are developed to extend
our BPEL engine, and two transformation mechanisms
for converting Web contents and Android activities are
undergone a conversion into OSGi services before being
invoked and composed at runtime by the extended BPEL
engine through adapters.

This paper is organized as follows. We discuss the
related work in Section 2. Section 3 describes fully the
proposed framework. In Section 4, we conduct two
experimental evaluations. Finally, in Section 5, we sum-
marize the contributions of the proposed framework.

2 RELATED WORK

It is widely accepted that combining multiple web ser-
vices into a composite service is more beneficial to users
than finding a complex and preparatory atomic service
that satisfy a special request [26], [27], [28], [18], [17].
The resulted composite services can be used as atomic
services by themselves in other service compositions to
satisfy clients requests. BPEL4WS [6] provides a mixture
of block-structured and graph-structured process mod-
els, and variables associated with message types can be
specified as input or output variables to invoke, receive,
and reply web services.

Recently, BPEL has been extended to support model-
ing the composition of heterogeneous web services, such
as RESTful and OSGi services. REST [29] (REpresenta-
tional State Transfer) is a style of software architecture
for distributing hypermedia systems such as the World
Wide Web. REST defines a set of architectural principles
[29] by which one can design web services that focus on
a system’s resources, including how resource states are
addressed and transferred over HTTP by a wide range
of clients written in different languages.

In [8], F. Curbera et al. offer a service-composite
development model for composing RESTful services.
During the invocations of RESTful services, the messages
returned from a service are stored as BPEL process
variables. However, how to transform the messages to
different content types for follow-up service invocations
is unclear.

In [16], K. He proposes a composite system for in-
tegrating both SOAP and RESTful services with a hy-
brid orchestration based on a BPEL engine and a REST
orchestration engine. The composite service workflow
is divided into two kinds of sub-workflows according
to the types (SOAP or RESTful) of services to be com-
posed. However, the message transformation between
the SOAP and RESTful is not discussed.

In [11], S. Farokhi. et al. propose a framework, called
MDCHeS, to support dynamic composition and to use
both SOAP-based and RESTful Web services simultane-
ously in composite services with three different views:
data, process, and component view. However, the ap-
proach, like the other approaches, does not discuss the
message transformation between the SOAP and RESTful.

In [33], J. Nitzsche et al. extended BPEL 2.0 with a
WSDL-less interaction model, call BPELlight, to enable
coupling business logic and Web service technology,
including WSDL, by introducing a new and single type
of interaction activity resuming all BPEL interaction
activities. The main focus of the paper is to enable
modeling processes or process fragments that can be
reused and bound to specific service interfaces in any
interface description language. Our approach, however,
focuses more on how to model and implement the
binding relationships among heterogeneous services.

In [31][32], C. Pautasso proposed a process-based com-
position language for composing RESTful and traditional
WSDL-based services based on BPEL. The local adapters
(e.g. XSLT, JavaScript) are used to process the data and
transform it to make it compatible with what the other
service requires. In our approach, SOAP, RESTful and
OSGi services are all supported for invocation while ex-
ecuting a composite process. Furthermore, SOAP, JSON,
YAML, Protocol Buffer, and Java object messages re-
turned from a service can be transformed into Java
objects used as variables of a BPEL process. After the first
transformation, the variables can then be transformed
again into messages of different content types for follow-
up service invocations.

3 HETEROGENEOUS SERVICE COMPOSITION
FRAMEWORK

In this work, an extended BPEL engine is developed
by applying Adapter pattern [21] to compose SOAP,
RESTful and OSGi services. Figure 2 shows the system
architecture of the heterogeneous service composition
framework. A concise description of our BPEL engine is
given below without going into details of its modules.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

Partner Link Handler

Fig. 2. The system architecture of the heterogeneous service composition framework

The adapters and transformers will be further elaborated
in the sections 3.2, 3.3, 3.4 and 3.5.

The entry point of the BPEL engine is Composite
Service Activator component with inputs of WSDL and
BPEL documents. Deploy component deploys the docu-
ments with BPEL properties and uses Service Generator
component to transform the BPEL process defined in the
BPEL document into Java classes.

Reader component is in charge of generating a BPEL
model by analyzing the WSDL and BPEL documents and
instantiating the Java class. BPEL Manager component
starts the BPEL process by creating a BPEL process
instance from the BPEL model with instances of the Java
classes.

BPEL Runtime component runs BPEL processes at run
time. A BPEL process consists of two kinds of activities:
basic and structured. A basic activity describes elemental
steps of the process behavior. A structured activity en-
codes control-flow logic and can contain other basic or
structured activities recursively. Thread Manager com-
ponent handles the multi-threads based on XPath and
XQuery.

SOAP, RESTful, and OSGi Adapters are responsible
for invoking SOAP, RESTful, and OSGi services, respec-
tively. The three adapters implement the Partner Link
Handler interface, which enables the BPEL engine to
delegate service invocation behaviors to the services.
Mobile Applications Transformer transforms Android
APKs into OSGi services, and Web Content Asset Trans-
former transforms web contents into OSGi services.

Our BPEL engine, complied with BPEL version 2.0, is
implemented in Java with 44 packages, 426 classes, 3750
methods and a total of 93609 lines of code. The adapters
and transformers are implemented with 11 packages, 105
classes, 461 methods, and 6453 lines of code.

3.1 Experimental Scenario

In this work, a smart living control system with a
number of heterogeneous services is developed as the
experimental environment for comparing our proposed
approach with the traditional approach. The system
obtains sensor data in order to calculate the predicted
mean vote (PMV) indicator for temperature, humidity,
illuminance, etc. The PMV system is supplemented with
HVAC (heating, ventilation, and air conditioning) tech-
nology, lighting, and motorized roller blinds to provide
an energy-saving living environment. We develop two
smart living system scenarios by adopting the traditional
approach and the proposed approach (see Figure 3 and
Figure 4).

In the traditional approach (Figure 3), RESTful services
and Web contents are wrapped as SOAP services and
deployed in the server side. As for the Android activity
running on Android platform, they can not be directly
invoked by the BPEL engine. Hence, a SOAP service is
required as a proxy for retrieving the data generated
from the activity. The steps of composing the services
are as follows:

1) Steps 1-3: The web information about current
weather information including temperature, hu-
midity, sunlight, and illumination of the area are
retrieved through an Android activity. After that,
the activity sends the weather data to a SOAP
service. The BPEL engine will retrieve the data
through invoking the SOAP service.

2) Step 4: The BPEL engine sends the weather data
to the calculated PMV SOAP service. Based on the
temperature, humidity, and illumination value, the
optimal parameter values for the HVAC technol-
ogy, lighting, and motorized roller blinds will be
determined and returned to the BPEL engine.

3) Steps 5-7: The RESTful services of Motorized roller

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4

SOAP
Service

SOAP
Service

Motorized
roller blinds 
controller
RESTful
service

Recommendations
on energy saving 
info. Web page

HVAC
Controller
RESTful
service

weather , 
temperature, 

lumen..and so on.

Lighting
Controller
RESTful
service

Client Side (Mobile Device)

BPEL Engine

SOAP
Service

Server Side

SOAPSOAP SOAP

SOAP
Service

SOAP

HTTP

Electrical roller 
blinds Lightings HVACs

SOAP
Service

Weather Data 
Android Activity

SOAPSOAP

Calculate
PMV

SOAP service

HTTP HTTP HTTP HTTP

Fig. 3. The heterogeneous service compositions sce-
nario by the traditional approach

Energy saving info. 
Web Content

AdapterAdapterAdapterAdapterAdapter

HTTP

OSGi

OSGi service

HTTP

Adapter

Extended BPEL Engine

HTTP

weather , 
temperature, 

lumen..and so on.

Weather Data 
Android Activity

OSGi service

OSGi

Motorized
roller blinds 
controller
RESTful
service

Recommendations
on energy saving 
info. Web page

HVAC
Controller
RESTful
service

Lighting
Controller
RESTful
service

Calculate
PMV

SOAP Service

Server Side
Electrical roller 

blinds
Lightings HVACs

SOAP

Client Side (Mobile Device)

Packaged as

Fig. 4. The heterogeneous service compositions sce-
nario by our approach

blinds controller, Lighting Controller, and HVAC
Controller will be invoked with the parameters of
the optimal parameter values by the SOAP ser-
vices.

4) Step 8: The BPEL engine invokes a SOAP service
to collect the energy saving information. The SOAP
service will parse the web page of the information
and return the result back to the BPEL engine.

In our proposed approach (Figure 4), the scenario in-
cludes an extended BPEL engine bundled with adapters
that enable directly invocations of the heterogeneous
services in the experimental environment (see Figure 4).
The steps of composing the services are as follows:

1) Step 1: As the Weather Data Android Activity is
transformed into an OSGi bundle through the mo-
bile applications transformer, the extended BPEL
engine can directly invoke the OSGi service to
retrieve the weather information.

2) Step 2: The extended BPEL engine sends the
weather data to the calculated PMV SOAP service.
Based on the temperature, humidity, and illumina-
tion value, the optimal parameter values for the
HVAC technology, lighting, and motorized roller
blinds will be determined and returned to the
extended BPEL engine.

3) Steps 3-5: The RESTful services of Motorized roller

<wsdl:service name="WeatherService">
<wsdlrestful:address protocol="http" format="json"

url="http://query.yahooapis.com/v1/public/yql?q=*" />
</wsdl:service>

Fig. 5. An example of describing a RESTful service

blinds controller, Lighting Controller, and HVAC
Controller will be directly invoked with the pa-
rameters of the optimal parameter values by the
extended BPEL engine.

4) Step 6: The energy saving information web page
will be transformed into an OSGi bundle through
the web content asset transformer, and to be com-
posed by the extended BPEL engine through the
OSGi adapter.

3.2 Composing RESTful Services

• Protocol: The protocols that a RESTful service sup-
ports, e.g., HTTP.

• Message Format: The message formats that a REST-
ful service supports, e.g., JSON, YAML, and protocol
buffer.

• Url: The URL of a RESTful service.
The extension of WSDL for describing RESTful ser-

vices includes protocols, urls, and message formats. Fig-
ure 5 shows an example of describing a Weather RESTful
service. The service supports HTTP protocol and is with
the content format of JSON.

Figure 6 shows the architecture of the RESTful service
adapter. During the execution process, the extended
BPEL engine parses the WSDL document of the RESTful
service. The properties of the <wsdlrestful:address>
elements are obtained from the WSDL. The protocol
property determines the protocol of the RESTful service.
The url property determines the network address of
the RESTful service. The format property returns the
content type of the RESTful service messages. When
the messages return from the RESTful service, they are
transformed into Java objects as runtime variables of the
composite process through the JSON/YAML/Protocol
Bufffer to Java object module based on open source
org.json and org.ho.yaml packages. Messages are con-
verted into JSON, YAML or Protocol Buffer messages
before they are sent as inputs to another web service.

3.3 Composing OSGi Services

• type: The type that an OSGi service locates, e.g.,
local.

• serviceName: The service name that an OSGi ser-
vices registers in the OSGi register.

• filter: The filter is an optional property that identifies
a concrete OSGi service.

In the framework, we extend WSDL to describe OSGi
services including their types, service names and filters.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

RESTful Adapter

BPEL Engine

JSON/YAML/Pr
otocol Buffer to 

Java Object

RESTfulService.wsdl
.
.
.
<service>
<wsdlrestful:address
…/>
</service>

RESTful
Service

Partner Link 
Handler

describe

Java Object to 
JSON/YAML/Pr

otocol Buffer

invoke

return

5

Fig. 6. RESTful adapter architecture

<wsdl:service name=“TimerService">

<wsdlosgi:address type=“local" serviceName=“ntu.osgi.Timer“ filter=“” />

</wsdl:service>

Fig. 7. An example of describing an OSGi service

Figure 7 shows an example of describing an OSGi ser-
vice. The WSDL describes that an OSGi TimerService is
run on a local device and its service name registered is
ntu.osgi.Timer.

Figure 8 shows the architecture of the OSGi service
adapter. By referring to the extended WSDL, the ex-
tended BPEL engine reads the properties of the OSGi ser-
vice by using the OSGi adapter, which inherits a partner
link handler interface. The adapter searches for the OSGi
service through the OSGi registry to get the service’s
reference, and then invokes the services through method
call.

3.4 Composing Mobile Applications

In this section, we describe a mobile application transfor-
mation mechanism that enables transforming Android
Activities to OSGi bundles. The transformed OSGi bun-
dles can be invoked and composed by the extended
BPEL engine.

Figure 9 shows the architecture of the mobile applica-
tions transformer. The inputs of the transformer include

OSGi Adapter

BPEL Engine

OSGi Service

OSGiService.wsdl
.
.
.
<service>
<wsdlosgi:address …
/>
</service>

OSGi Service
Registry

Partner Link 
Handler

describe

register

search for
service

invoke

Fig. 8. OSGi Adapter Architecture

src
res
lib
MF

Felix apk

src
res
lib
MF

Apk 1

Apk 2

Mobile Applications Transformer

src
res
lib
MF

New apk

src
res
lib
MF

Integrate res

Integrate src

Import lib

Integrate
Android MF
Modefy Felix 

export package

Add bundle 
Activator

Create
classes.dex

Bundle1

Bundle2

OSGi service 
Container

Android 
Platform

install

start

Install
& Start

…

Service
Container

Function SystemApk

Bundle

develope

Fig. 9. Mobile applications transformer architecture

the project assets of an Android application that runs on
an OSGi platform (Apache Felix) and several existing
Android applications. The output is a new Android
application together with several OSGi bundles that pro-
vide services for invoking the Activities of the existing
Android applications. The project assets of developing
an Android application include source code files (src) ,
resource files (res), libraries (lib), and a Manifest file. The
main functions of the transformer are as follows:

1) Integrate resources: In order to prevent the conflicts
among the resource file names of the Android
applications, all resource files (images, strings, lay-
outs, etc.) will be renamed during the transforma-
tion process.

2) Integrate source code: The parts of the code that
originally refer to the resource files will be modified
to refer to the renamed resource files.

3) Import libraries: All of the libraries of each Android
application will be copied into a new directory, and
the new classpath file will include the references to
these libraries.

4) Integrate manifests: The AndroidManifest.xml is a
configuration file that contains Android application
information and describes all package components,
including the activities, services, and receivers. This
function is to integrate the manifest files into a new
one.

5) Modify the Felix export packages: To deploy the
OSGi framework on the new Android application,
the Apache Felix library (Felix.jar) was transformed
into an OSGi bundle. The Context.startService()
function is used to start (bind) the OSGi frame-
work, and the Context.stopService() is used to stop
(unbind) the OSGi framework. After the OSGi
framework environment is established, OSGi bun-
dles can be installed and uninstalled on the An-
droid platform.

The activities of transforming the Android applica-
tions into OSGi bundles are as follows:

1) Add a bundle activator: For each Android activity,
an OSGi bundle activator class will be automati-
cally generated for the invocation of the Android

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

activity. The activator class includes five methods:
• void invokeActivity(): This method involves no

input parameter value or returns value. In-
voking this method will directly invoke the
Android activity using Android Intent mech-
anism.

• void invokeActivity(byte[] bytes): This method
will invoke the Android activity with a param-
eter of a byte array.

• byte[] invokeActicityForResult(): When the
method is invoked, it will invoke the Android
activity and wait for the returned value from
the activity.

• byte[] invokeActivityForResult(byte[] bytes): This
method will invoke the Android activity with
a parameter of a byte array and wait for the
returned value from the activity.

• byte[] invokeActivityForResult(Object obj): This
method will invoke the Android activity with
a parameter of an object and wait for the
returned value from the activity.

2) Generate Manifest: This activity is to generate a
manifest file for each generated OSGi bundle. The
following elements must be declared in the mani-
fest file.

3) Generate and add classes.dex: The OSGi bundles
will be compiled into a dex file to enable their
executions on the Android platform.

3.5 Composing Web Contents

As Web contents in HTML are usually readable only
for human and are with diverse information, the web
content asset transformer enables a system designer to
identify the assets in the web pages and transform them
to OSGi services at design time so as to be composed in
a composite process at runtime.

Figure 10 shows the architecture of the web content
asset transformer. The transformer consists of three com-
ponents: a Webpage list manager, a data parser and a
bundle packager. The Webpage list manager enables a
user to identify and select the assets in the web pages,
such as images or texts. The data parser parses the
selected web pages and extract the assets. The bundle
packager transforms the extracted assets into an OSGi
bundle. In the following, we detail how to extract web
content assets and how to transform these assets into an
OSGi bundle.

As the web pages are selected by the user, the data
parser converts the HTML documents into document
object model (DOM) trees, and parses the following four
types of assets with their corresponding HTML tags:

• Text: <h1> . . .<h6>, <p>, <textarea>,
<blockquote>, <pre>

• Image: <img>
• Video: <video>
• Audio: <audio>

Webpage list manager

Data Paser

Bundle Packager

Web
Obtain

search results

Obtain web
contents

download web
contents

Web content asset
transformer

generate

data

url

OSGi
Bundle

Fig. 10. Web content asset transformer architecture

TextInfo ImageInfo VideoInfo AudioInfo

MultimediaInfo

Fig. 11. Java bean objects for storing the web content
assets

These assets are stored in four Java bean objects (Fig-
ure 11). These Java beans all inherit the same parent
class MultimediaInfo. The attributes of each class are as
follows:

• MultimediaInfo: id, title
• TextInfo: content
• ImageInfo: alt, width, height, filename, src, content
• VideoInfo: poster, width, height, filename, src, con-

tent
• AudioInfo: filename, src, content
Attribute id keeps the identifier of each asset by

following the universally unique identifier (UUID) stan-
dard. Attribute title stores any ”title”-related data at-
tribute. Attribute content stores data with a byte array.
Attributes width and height record the resolution of a
image or a video. Attribute filename specifies the file
name of each asset.

After the web content assets are extracted by the data
parser, the assets together with the serializations of the
Java bean objects will be stored into a folder. Meanwhile,
an OSGi bundle activator class that implements the
interface showed in Figure 12 will be generated in the
folder as well. The class provides OSGi services after the
folder is packaged into an OSGi bundle. The exposed
OSGi services include:

• getAllTexts(): String[], to retrieve the titles of the
TextInfo Java bean objects as a string array.

• getText(String query): MultimediaInfo[], to retrieve
the assets through keyword matchings for the titles.

• getAllImages(): MultimediaInfo[], to retrieve all im-
ages.

• getImage (String title): MultimediaInfo[], to retrieve
the images of the specified title.

• getAllVideos(): MultimediaInfo[], to retrieve all
videos.

• getVideo(String title): MultimediaInfo[], to retrieve

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

pubilc interface DataBundle {
String[] getAllTexts();
MultimediaInfo[] getText(String query);
String[] getAllImages();
MultimediaInfo[] getImage(String title);
String[] getAllVideos();
MultimediaInfo[] getVideo(String title);
String[] getAllAudios();
MultimediaInfo[] getAudio(String title);

}

Fig. 12. The interface of web content bundle

…

ss

ss

sa

Client Server

rs

rs
ra

…

os

osoa

…

eBPEL

os

req
res

res

…

ss

ss

Client Server

rs

rs

…

os

…

req

BPEL

(a) (b)

Fig. 13. The network traffic generated between client and
server through (a) the traditional framework, and (b) the
proposed framework.

the videos of the specified title.
• getAllAudios(): MultimediaInfo[], to retrieve all au-

dio files
• getAudio(String title): MultimediaInfo[], to retrieve

the audio files of the specified title.
After the folder is ready for packaging, the Bundle

Packager automatically generates the manifest file into
the folder and starts compressing the folder into a jar
file as an OSGi bundle. The manifest file contains the
information of the exported OSGi service interfaces of
the bundle.

4 EXPERIMENTAL EVALUATION
In this section, we conduct experimental evaluations to
demonstrate that both network traffic and turnaround
time of the proposed framework are better than the
traditional frameworks.

4.1 Definition of Evaluation Metrics

To evaluate the performance of our approach and the
traditional framework, two metrics are adopted: (1) net-
work traffic: data transmitted over a network; and (2)
turnaround time: the total time between the submission
of a program for execution and the return of the com-
plete output to the customer.

The network traffic metric is formally defined in Def-
inition 1.

Definition 1. Given a set of heterogeneous services
S = {{ss1, ..., ssn}, {rs1, ..., rsm}, {̇os1, ..., osp}}, where a
SOAP service is denoted as ssi, a RESTful service is denoted
as rsi and an OSGi service is denoted as osi. In the traditional
approach, the network traffics generated in invoking SOAP,
RESTful and OSGi services are denoted as N tb

soap, N tb
rest

and N tb
osgi, respectively. The total network traffic is denoted

as N tb
total and is calculated by equation 1. The adapter that

sends and receives messages between RESTful services and
SOAP services, denoted as r2si, and the adapter that sends
and receives messages between OSGi services and SOAP ser-
vices, denoted as o2si. In the proposed approach, the network
traffics generated in invoking SOAP and RESTful services
are denoted as Neb

soap and N eb
rest, respectively. Because OSGi

services are locally invoked, no network traffics are generated.
The adapters that sends and receives messages between the
extended BPEL engine and SOAP services, RESTful services
and OSGi services are denoted as sai, rai and oai, respec-
tively. The total network traffic is denoted as N eb

total and is
calculated by equation 5.

N tb
total = N tb

soap +N tb
rest +N tb

osgi (1)

N tb
soap =

n∑

i=1

reqi +
n∑

i=1

resi (2)

N tb
rest =

m∑

i=1

reqi +

m∑

i=1

resi (3)

N tb
osgi =

p∑

i=1

reqi +

p∑

i=1

resi +

p∑

i=1

req”i +

p∑

i=1

res”i (4)

Neb
total = Neb

soap +Neb
rest (5)

Neb
soap =

n∑

i=1

reqi +
n∑

i=1

resi (6)

Neb
rest =

m∑

i=1

req′i +
m∑

i=1

res′i (7)

reqi is the size of the request message sent to a SOAP
service ssi, and resi is the size of the reply message returned
from the SOAP service. req′i is the size of the request message
sent from the adapter r2si to the RESTful service rsi, and res′i
is the size of the reply message returned from the RESTful
service. req′′i is the size of the request message sent to the
OSGi service osi from the adapter o2si, and res′′i is the size
of the reply message returned by OSGi service.

As shown in Figure 13(a), the BPEL engine sends
request messages to remote SOAP services, RESTful ser-
vices, and OSGi services and receives response messages
from the invoked serviced through the traditional ap-
proach. SOAP services located at server-side are built as
adapters for the service invocation by the BEPL engine.
The total network traffic, N tb

total, is the sum of network
traffics in between the BPEL engine and SOAP services

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

(Equations 2 and 3), and in between OSGi services and
adapters (Equation 4).

As depicted in Figure 13(b), the extended BPEL engine
directly invokes remote heterogeneous services through
the bundled adapters sai, rai and oai. The total network
traffic N eb

total is the sum of the network traffics in between
the BPEL engine, SOAP services, and the RESTful ser-
vices.

Definition 2 defines turnaround time that is a metric
derived from the transmission time and processing time.
The transmission time is the amount of time for sending
a message from the start node of a link to its the
destination node of a link. The processing time is the
amount of time for executing a service after the service
receives an invocation request.

Definition 2. Definition 2. Given a set of heterogeneous
services S = {{ss1, ..., ssn}, {rs1, ..., rsn}, {̇os1, ..., osn}},
where a SOAP service is denoted as ssi, a RESTful service is
denoted as rsi and an OSGi service is denoted as osi. In the
traditional approach, the total turnaround time is denoted as
Rtb

total. The turnaround time for invoking the SOAP, RESTful
and OSGi services are denoted as Rtb

soap, Rtb
rest, and Rtb

osgi,
respectively. In the proposed approach, the total turnaround
time is denoted as Reb. The turnaround time for invoking
the SOAP, RESTful and OSGi services are denoted as Reb

soap,
Reb

rest and Reb
osgi, respectively.

Rtb
total = Rtb

soap +Rtb
rest +Rtb

osgi (8)

Rtb
soap =

n∑

i=1

reqi + resi
bc,si

+ (

n∑

i=1

spi
csi

+

n∑

i=1

sai

cc
) (9)

Rtb
rest = (

∑m
i=1

reqi+resi
bc,si

+
∑m

i=1

req′i+res′i
bs,si

)

+(
∑m

i=1
spi
csi

+
∑m

i=1
r2si
csi

)
(10)

Rtb
osgi = (

∑p
i=1

reqi+resi
bc,si

+
∑p

i=1

req′′i +res′′i
bs,si

)

+(
∑p

i=1
spi
cc

+
∑p

i=1
o2si
csi

)
(11)

Reb
total = Reb

soap +Reb
rest +Reb

osgi (12)

Reb
soap =

n∑

i=1

reqi + resi
bc,si

+ (
n∑

i=1

spi
csi

+
n∑

i=1

sapi
cc

) (13)

Reb
rest =

m∑

i=1

req′i + res′i
bs,si

+ (

m∑

i=1

spi
csi

+

m∑

i=1

rapi
cc

) (14)

Reb
osgi =

p∑

i=1

req′′i + res′′i
bs,si

+ (

p∑

i=1

spi
cc

+

p∑

i=1

oapi
cc

) (15)

bc,si is the bandwidth between the client and the server si.
bs,si is the bandwidth between the servers. spi is the number
of time units required for invoking the services on si. api is
the number of time units needed to process the results obtained
from service invocations. sapi, rapi, oapi are the numbers of
time units required for invoking SOAP, RESTful and OSGi
services, respectively. cc is the computing capability of the
client, and csi is the computing capability of the service si.

In the traditional approach, the turnaround time of
SOAP service, Rtb

soap, refers to the amount of time spent

in sending and receiving messages for service invo-
cations,

∑n
i=1

reqi+resi
bc,si

, that is, it counts the time of
execution process of the related services in server and
adapters in client,

∑n
i=1

spi

csi
+
∑n

i=1
sai

cc
. The turnaround

time of RESTful service, Rtb
rest, is the amount of time

spent in sending and receiving messages for service
and adapter invocations,

∑m
i=1

reqi+resi
bc,si

+
∑m

i=1
req′i+res′i

bs,si
, that is, it counts the time of execution process of
the related adapters and services,

∑m
i=1

spi

csi
+

∑m
i=1

r2si
csi

.
The turnaround time of OSGi service, Rtb

osgi, is the
amount of time spent in sending and receiving messages
for service and adapter invocations,

∑p
i=1

reqi+resi
bc,si

+

sump
i=1

req′′i +res′′i
bs,si

, that is, it counts the time of execution
process of related adapters and services,

∑p
i=1

spi

cc
+∑p

i=1
o2si
csi

.
In our approach, the turnaround time of SOAP

service,Reb
soap, consists of the time in sending and re-

ceiving messages for service invocations,
∑n

i=1
reqi+resi

bc,si
,

and of the time of execution process of related adapters
and services,

∑n
i=1

spi

csi
+

∑n
i=1

sapi

cc
. The turnaround

time of RESTful service, Reb
rest, consists of the time in

sending and receiving messages for service invocations,∑m
i=1

req′i+res′i
bs,si

, and of the time of execution processes
of related adapters and services,

∑m
i=1

spi

csi
+

∑m
i=1

rapi

cc
.

The turnaround time of OSGi service, Reb
osgi, consists of

the time in sending and receiving messages for service
invocations,

∑p
i=1

req′′i +res′′i
bs,si

, and of the time of execution
processes of related adapters and services,

∑p
i=1

spi

cc
+∑p

i=1
oapi

cc
.

4.2 Experimental Results

In the experimental environment, the client-side mobile
device is Android 2.2 platform with 1 GHz Cortex A8
CPU and 512 MB memory. The server runs Java virtual
machine 6.0 and the OSGi platform is Apache Felix. We
calculate the turnaround time and the network traffic
by adopting our approach and the traditional approach
over a wireless network with a 256 KB/s bandwidth
which is estimated and controlled by a bandwidth con-
troller software. A site denotes a smart living control
environment as described in section 3.1. There are up to
40 sites in the experiment. For each kind of service with
a certain number of sites, the turnaround time is the sum
of the time gathered for all the sites. Each approach is
applied and evaluated 2000 times, and the average of the
turnaround time is calculated and depicted in Figures 14,
15, 16, 17, 18, and 19.

Figures 14 and 19 show the turnaround time of in-
voking weather data Android activity and receiving
recommendation web contents, respectively. Noted that
there is no need to transfer the data by the server-
side SOAP service in our approach, which gives us an
advantage of less turnaround time over the traditional
one. Figure 15 indicates that the differences between our

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

0

500

1000

1500

2000

2500

1 5 10 15 20 25 30 35 40

The Proposed Approach The Traditional Approach

Number of Sites

Tu
rn
ar
ou

nd
Ti
m
e
(m

ill
ise

c.
)

Fig. 14. The turnaround time of invoking weather data
Android activity

0

500

1000

1500

2000

1 5 10 15 20 25 30 35 40

The Proposed Approach The Traditional Approach

Number of Sites

Tu
rn
ar
ou

nd
Ti
m
e
(m

ill
ise

c.
)

Fig. 15. The turnaround time of invoking PMV soap
service

approach and the traditional one are small in invoking
PMV SOAP service.

The experimental results shown in Figures 16, 17 and
18 point out that the turnaround time of invoking the
controller RESTful services in our approach is less than
those of the traditional one due to the request message
data are directly transferred in between the extended
BPEL engine and the RESTful services without being
transferred through server-side SOAP services. Figure 20
shows the total turnaround time of the two approaches.
In the experiment, the turnaround time is largely influ-
enced by the transferred data size. Table 1 shows that the
t value for comparing the total turnaround time is 4.463
(>2.306) with degrees-of-freedom=8 and α=0.05, which
indicates that there is a significant difference between
the total turnaround time of the two approaches.

The evaluation results shown in Figure 21 indicate
that our approach generates less network traffic than
the traditional approach. The traditional approach re-
quires server-side soap services to connect to the RESTful
services and OSGi bundles. The traditional approach
requires server-side soap services located in a server site
(room) to connect to the RESTful services and OSGi bun-
dles. As the number of the server sites (rooms) increases,
our approach is significantly superior to the traditional
approach on the network traffics. Table 2 shows that the t
value for comparing the network traffic is 4.753 (>2.306)
with degrees-of-freedom=8 and α=0.05, which indicates
that there is a significant difference between the average
values of the network traffics of the two approaches.

0

1000

2000

3000

4000

5000

1 5 10 15 20 25 30 35 40

The Proposed Approach The Traditional Approach

Number of Sites

Tu
rn
ar
ou

nd
Ti
m
e
(m

ill
ise

c.
)

Fig. 16. The turnaround time of invoking motorized roller
blinds controller RESTful service

0

1000

2000

3000

4000

5000

6000

7000

1 5 10 15 20 25 30 35 40

The Proposed Approach The Traditional Approach

Number of Sites
Tu

rn
ar
ou

nd
Ti
m
e
(m

ill
ise

c.
)

Fig. 17. The turnaround time of invoking lighting controller
RESTful service

0

500

1000

1500

2000

2500

3000

1 5 10 15 20 25 30 35 40

The Proposed Approach The Traditional Approach

Number of Sites

Tu
rn
ar
ou

nd
Ti
m
e
(m

ill
ise

c.
)

Fig. 18. The turnaround time of invoking HAVC controller
RESTful service

0

5000

10000

15000

20000

1 5 10 15 20 25 30 35 40

The Proposed Approach The Traditional Approach

Number of Sites

Tu
rn
ar
ou

nd
Ti
m
e
(m

ill
ise

c.
)

Fig. 19. The turnaround time of retrieving energy saving
recommendations web content

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

0
5000
10000
15000
20000
25000
30000
35000
40000

1 5 10 15 20 25 30 35 40

The Proposed Approach The Traditional Approach

Number of Sites

Tu
rn
ar
ou

nd
Ti
m
e
(m

ill
ise

c.
)

Fig. 20. Total turnaround time

TABLE 1
Paired samples t-test of the total turnaround time

Number
of sites

The Traditional Approach
(T1)

The Proposed Approach
(T2)

1 2501.66 873.32
5 5945.74 1818.43
10 7658.31 2347.08
15 11125.02 3368.5
20 18510.11 4427.86
25 22278.28 5837.8
30 26699.12 7520.16
35 31390.8 8629.89
40 35867.63 9634.35
T1-T2 Using α = 0.05 and degrees of freedom=8, t=4.463 (>2.306)

0
200
400
600
800

1000
1200
1400
1600

1 5 10 15 20 25 30 35 40

The Proposed Approach The Traditional Approach

Number of Sites

Tr
an
sf
er
ed

Da
ta

Si
ze

(K
B)

Fig. 21. Network traffic generated between client and
servers

TABLE 2
Paired samples t-test of the network traffics

Number
of sites

The Traditional Approach
(N1)

The Proposed Approach
(N2)

1 24.72827 11.78827
5 230.51311 25.6406
10 445.47998 50.76045
15 584.72878 62.7459
20 783.23135 81.49608
25 951.99891 95.89873
30 1089.49562 117.6038
35 1262.91215 134.16151
40 1423.30293 148.17036
N1-N2 Using α = 0.05 and degrees of freedom=8, t=4.753 (>2.306)

5 CONCLUSION

This paper presents a framework for composing SOAP,
RESTful, OSGi services, web contents and Android Ac-
tivities. A BPEL engine is extended and bundled with
adapters to enable the direct invocation and composition
of SOAP, RESTful and OSGi services with heterogeneous
content types: SOAP, JSON, YAML, Protocol Buffer and
Java objects. Additionally, two transformation mecha-
nisms are devised to enable the transformation of Web
contents and Android activities that are two typical
assets on mobile devices into OSGi services so as to be
composed by the extended BPEL engine.

We also conducted an experiment on a smart liv-
ing control system to evaluate our approach. In our
approach, the request and response messages of the
invocations of RESTful services do not need to be trans-
ferred via server-side SOAP services. These messages are
directly transferred in between the extended BPEL en-
gine and the RESTful services. The experimental results
show that our proposed approach generates less network
traffic and spends less turnaround time than those of the
traditional approaches.

With the extended BPEL engine based on Adapter
pattern, SOAP, non-SOAP and non-Web services can be
integrated through a systematic way. Furthermore, the
engine can be considered as a more suitable framework
for composing heterogeneous services than the tradi-
tional ones from the perspective of resource consump-
tions in mobile environments.

ACKNOWLEDGMENTS

This research was sponsored by National Science Coun-
cil (Taiwan) under the grant NSC 102-2622-E-002-007-
CC1.

REFERENCES

[1] J. Lee, S.-J. Lee, H.-M. Chen, and K.-H. Hsu. Itinerary-based
Mobile Agent as a Basis for Distributed OSGi Services. IEEE
Transactions on Computers, 62(10):1988-2000. 2013

[2] Y. Natchetoi, V. Kaufman, and A. Shapiro. Service-oriented ar-
chitecture for mobile applications. Proceedings of the 1st inter-
national workshop on Software architectures and mobility. ACM,
2008.

[3] D.-M. Han and J.-H. Lim. Design and implementation of smart
home energy management systems based on zigbee. IEEE Trans-
actions on Consumer Electronics, 56(3): 1417-1425, 2010.

[4] M. Darianian, and M. P. Michael. Smart home mobile RFID-based
Internet-of-Things systems and services. Advanced Computer
Theory and Engineering, 2008. IEEE International Conference on
ICACTE, 2008.

[5] L. Atzori, A. Iera, and G. Morabito. The internet of things: A
survey. Computer Networks, 54(15): 2787-2805, 2010.

[6] T. Andrews, F. C, et al.. Business Process Execution Language
for Web Service (BPEL4WS) 1.1. Technical Report, BEA Systems
and International Business Machines Corporation and Microsoft
Corporation and SAP AG and Siebel Systems, 2003.

[7] W3C Member Submission. OWL-S: Semantic Markup for Web
Services. http://www.w3.org/Submission/OWL-S/. 2004.

[8] F. Curbera, M. Duftler, R. Khalaf, and D. Lovell. Bite: Workflow
composition for the web. ICSOC (2007) 94–106.

[9] R. P. Diaz Redondo, A. Fernandez Vilas, M. Ramos Cabrer, J. J.
Pazos Arias and M. R. Lopez. Enhancing Residential Gateways:
OSGi Service Composition. IEEE Transactions on Consumer Elec-
tronics, Vol 53, No 1, February 2007, 87-95.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

[10] M. zur Muehlen, J.V. Nickerson,and K.D. Swenson, Developing
web services choreography standards V the case of REST vs.
SOAP. Decision Support System 37 (2004)

[11] S. Farokhi, A. Ghaffari, H. Haghighi, and F. Shams. MDCHeS:
Model-Driven Dynamic Composition of Heterogeneous Service.
International Journal of Communications, Network and System
Sciences 5 (2012).

[12] J. Niemoller, K. Vandikas, R. Levenshteyn, D. Schleicher, and
F. Leymann. Towards a Service Composition Language for Het-
erogeneous Service Environments. 2011 15th IEEE International
Conference on Intelligence in Next Generation Networks, 2011.

[13] J. Lee, S.P. Ma, S.J. Lee, Y.C. Wang, and Y.Y. Lin. Dynamic Service
Composition: A Discovery-Based Approach. International Journal
of Software Engineering and Knowledge Engineering, March
2008, 18(2):199-222.

[14] J. Lee, S.J. Lee, H.M. Chen, and C.L. Wu. Composing web services
enacted by autonomous agents through agent-centric contract net
protocol. Information and Software Technology, 54 (2012) 951V967

[15] Y.Y. Peng, S.P. Ma, and J. Lee. REST2SOAP: a Framework to
Integrate SOAP Services and RESTful Services, Service-Oriented
Computing and Applications (SOCA). 2009 IEEE International
Conference on

[16] K. He. Integration and Orchestration of Heterogeneous Services.
Proceedings of the IEEE Joint Conferences Pervasive Computing
(JCPC), 3-5 December 2009, pp. 467-470.

[17] S. Dustdar and W. Schreiner. A survey on web services com-
position. Technical report, Distributed Systems Group, Technical
University of Vienna, 2004.

[18] H. Cervantes and R. S. Hall. Service Oriented Concepts and
Technologies in the book Service-Oriented Software System Engi-
neering: Challenges and Practices. Idea Group Publishing, 2005.

[19] R. P. D. Redondo, A. F. Vilas, M. R. Cabrer, J. J. P. Arias, J.
G. Duque, and A. GilSolla. Enhancing residential gateways: A
semantic osgi platform. IEEE Intelligent Systems, 23(1):32V40,
2008.

[20] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly (May
2007)

[21] Head First Design Patterns. By Eric Freeman, Elisabeth Robson,
Bert Bates, Kathy Sierra, O’Reilly Media(October 2004)

[22] M. Gudgin, M. Hadley, N. Mendelsohn, J.J. Moreau and H.F.
Nielsen. Simple Object Access Protocol (SOAP) 1.2. W3C, April
2007, http://www.w3.org/TR/soap12.

[23] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana. Web
services description language (WSDL) version 1.1. W3C, March
2001, http://www.w3.org/TR/wsdl.

[24] Knopflerfish 3, OSGi R4., http://www.knopflerfish.org/.
[25] Eclipse, http://www.eclipse.org/.
[26] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The

next step in web services. Communications of the ACM, 46(10):29-
34, 2003.

[27] M.P. Papazoglou and D. Georgakopoulos. Service-oriented com-
puting: introduction. Communications of the ACM, 46(10):24-28,
2003.

[28] J. Lee, S.-P. Ma, and A. Liu. Service Life Cycle Tools and Tech-
nologies: Methods, Trends and Advances. IGI Grobal, 2011.

[29] R. Fielding. Architectural styles and the design of network-based
software architectures. Ph.D. thesis, University of California,
Irvine, 2000.

[30] OSGi Alliance. OSGi service platform, core specification, release
4. http://www.osgi.org/.

[31] C. Pautasso. A Flexible System for Visual Service Composition.
Diss. ETH No. 15608, July 2004.

[32] C. Pautasso, and G. Alonso. From Web Service Composition to
Megaprogramming. In Proceedings of the 5th VLDB Workshop
on Technologies for E-Services (TES-04), Toronto, Canada, August
29-30, 2004.

[33] J. Nitzsche, T. van Lessen, D. Karastoyanova, and F. Leymann.
BPELLight. Business process management, Springer, 4714(214-
229), 2007.

Jonathan Lee is a professor in the Computer
Science and Information Engineering at National
Taiwan University (NTU) in Taiwan. He was the
department chairman from 1999 to 2002 and
was the director of Computer Center at National
Central University from 2006 to 2012. His re-
search interests include software engineering,
service-oriented computing, and software engi-
neering with computational intelligence. He has
authored more than 100 journal articles and
refereed conference papers. He was awarded

IBM Shared University Research Award (2010), CIEE Electrical En-
gineering Outstanding Professor Award, NCU Distinguished Professor
Award, (2006-2013), and NCU Distinguished Research Award (2004).
He also served as the program chairs of the 12th Asia-Pacific Software
Engineering Conference (APSEC 2005) and the 8th International Fuzzy
Systems Association World Congress (IFSA 1999). He received his
Ph.D. in computer science from Texas A&M University in 1993. He is
a senior member of the IEEE Computer Society.

Shin-Jie Lee is an assistant professor in Com-
puter and Network Center at National Cheng
Kung University (NCKU) in Taiwan and holds
joint appointments from the Department of Com-
puter Science and Information Engineering at
NCKU. His current research interests include
agent-based software engineering and service-
oriented computing. He received his Ph.D. de-
gree in Computer Science and Information Engi-
neering from National Central University in Tai-
wan in 2007.

Ping-Feng Wang is a student for Ph.D. degree
in Computer Science and Information Engineer-
ing from National Central University, Taiwan. His
current research interests include software engi-
neering and service-oriented computing.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2310213

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


